On indecomposable projective representations of finite groups over fields of characteristic p>0
نویسندگان
چکیده
منابع مشابه
Representations of Reductive Groups Over Finite Fields
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annals of Mathematics is collaborating with JSTOR to digit...
متن کاملON THE CHARACTERISTIC DEGREE OF FINITE GROUPS
In this article we introduce and study the concept of characteristic degree of a subgroup in a finite group. We define the characteristic degree of a subgroup H in a finite group G as the ratio of the number of all pairs (h,α) ∈ H×Aut(G) such that h^α∈H, by the order of H × Aut(G), where Aut(G) is the automorphisms group of G. This quantity measures the probability that H can be characteristic ...
متن کاملComputing in Picard groups of projective curves over finite fields
We give algorithms for computing with divisors on projective curves over finite fields, and with their Jacobians, using the algorithmic representation of projective curves developed by Khuri-Makdisi. We show that various desirable operations can be performed efficiently in this setting: decomposing divisors into prime divisors; computing pull-backs and push-forwards of divisors under finite mor...
متن کاملOn projective linear groups over finite fields as Galois groups over the rational numbers
Ideas and techniques from Khare’s and Wintenberger’s article on the proof of Serre’s conjecture for odd conductors are used to establish that for a fixed prime l infinitely many of the groups PSL2(Flr ) (for r running) occur as Galois groups over the rationals such that the corresponding number fields are unramified outside a set consisting of l, the infinite place and only one other prime.
متن کاملComputing irreducible representations of supersolvable groups over small finite fields
We present an algorithm to compute a full set of irreducible representations of a supersolvable group G over a finite field K, charK |G|, which is not assumed to be a splitting field of G. The main subroutines of our algorithm are a modification of the algorithm of Baum and Clausen (Math. Comp. 63 (1994), 351–359) to obtain information on algebraically conjugate representations, and an effectiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2003
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm98-2-4